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Abstract. A method of obtaining a non -commutativeanalogueof a differential
structurefrom theaction of a Lie group on a C*~a1gebrais proposed.Theaddition
of this structure to the usual structureof quantum mechanicsturns out to be
equivalent to the replacementof the Hubert space by a Gelfandtriple (rigged
Hilbert space).

INTRODUCTION

It is striking that the notion of a <<smoothclassicalobservable>>(smoothfunc-

tion on thephasespace)hasno quantumanalogueup to now. This paperattempts

to fill this gap. The idea is simple: smooth functions can be characterizedas

those functions which dependsmoothly on translationsof the underlyingspace.

We can apply this characterizationto the caseof quantum-mechanicalobserva-

bles, sincethere is a naturalgroupof translationsin quantummechanics(Sec.3).

In this paper we consider quantum-mechanicalsystems correspondingto flat

configurationspaces.

From the mathematicalpoint of view, we try to extendthe categoryof diffe-

rential manifolds to include non-commutative objects. It is known that the

categoryof locally compactspaceshasa naturalextensiongiven by the theoryof
C*~algebras(<<pseudospaces>>of [1], seealso [21).Oneexpectsthat theanalogue

of a differential structureon a locally compactspaceis a particulardense“-sub-
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algebra A of a C*~algebraA (in the caseof a differential manifold M, A is

composedof continuousfunctions onM, vanishingat infinity, andA is compos-

ed of smooth functions belonging to A). In the presentpaperwe proposea

method of obtaining A from an action of a Lie group on A. Our method is

different from that of [2] and leads to the original differential structurein the

commutativecase(whereasthe methodof [2] doesnot).

The caseof quantummechanicsis studied in Sec.3. We showthat the resulting

differential structurecan beequivalently describedby a particulardensesubspace

in the Hilbert spaceof quantumtheory(this subspaceturnsout to be theSchwar-

tz space9” in the Schrodingerrepresentation).This gives a connectionbetween

the differential structure and the <<Gelfand triple>> structure.We hopethis fact

will help us to answerthe questionhow someimportant symplectic-geometrical

constructionscanbe performedin the caseof quantummechanics.Someresults

concerning this problem can be found in [3] and [4]. In thosepaperswe faced

the problem of <<choosingthe correct Gelfand triple>> and we have chosenthe

one associatedwith the space~9°just for convenience.The presentpaperjustifies

this choiceto someextent.

Our analysis of noncommutativedifferential structuresis not completeand

somequestionsremain unanswered.The commutativecase suggestsanswersto

thesequestions.We considertheseanswersas desirable<<consistencyconditions>’

in the non-commutativecase.In the caseof quantummechanicswe are ableto

prove all theseconditions exceptone. Whetherit is satisfiedor not seemsto be

an interestingmathematicalproblem.

1. PSEUDOSPACES

In this section we recall the sensein which the theory of C*~algebrasis a

generalizationof thetheoryof locally compactspaces(see[1] for details).

There is a bijective correspondencebetweenlocally compact spacesA and

commutativeC*~algebrasA, given by the relation A = C,.,JA) (complexconti-

nuousfunctionson A, vanishingat infinity). If A1 and A2 aretwo locally compact

spaces,then the continuousmappingsf : A1 -÷ A2 are in bijective correspondence

with theelementsof

(1) Mor(A2,A1)={~p:~is a *-homomorpliism of A2 into M(A1), such that

thesetA1 p(A2) is total in A1},

whereAk = C,.,(Ak). the correspondencebetweenf and p beinggiven by ~p(a2)=

= a2 of for a2 EA2. Here for anyC*~algebraA we denoteby M(A) themultiplier

algebra of A ([9], [1]). The algebraM(A) can he defined as follows. One can

always embedA into the algebraB(I1) of all boundedoperatorsin a Hubert
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spaceH. Let us fix onesuchembeddingA C B(H) andput

M(A) ={b E B(J1) : bA C A, Ab C A}.

M(A) is a C*~algebraand containsA as an ideal. The C*~algebraM(A) is deter-

mined only by A and doesnot dependon the way we embedA into B(II), i.e.

different embeddingslead to isomorphic C*~algebras(see [1]). For A =

M(A) is the algebraof boundedcontinuousfunctionson A.

We concludethat thecategoryof locally compactspacesis dual to the category

of commutativeC*~algebraswith morphismsdefinedin (1).

All (not necessarilycommutative) C* -algebraswith morphismsdefinedas in

(1) form a category.The possibility of composingmorphismsis guaranteedby

the fact that any p E Mor (A
2, A1) can be uniquely extendedto a homomorphism

~ :M(A2) —s-M(A1).Theobjectsof the (formally) dual categoryarecalledpseudo-

spaces.<<Pseudospace>>is (in general)only a suggestivenamefor a C*~algebraA if

one wants to think of A as an analogueof a locally compactspace.We havethe

following analogies:

Mor (C,,,(IR), A) — <<realcontinuousfunctions>>

ReM(A) <<boundedreal continuousfunctions>>

ReA — <<real continuousfunctions,vanishingat infinity>>,

where IR is the real line. Here for any *-algebraB we denoteby ReB thesetof

self-adjoint elementsof B. The inclusion of ReM(A) into Mor (C,~(R),A) is

given by assigning to each a =a* EM(A) the homomorphism CJIR) ~f~-*
t-s.f(a) EM(A). Here f(a) is defined by the functional calculus of self-adjoint

elementsin C*~algebras(see[7]). We shall usealso theanalogy

ReA0— <<real continuousfunctions with compactsupports>>,

whereA0 is the <<minimal denseideal>> of Pedersen[5] in A.

2. DIFFERENTIAL STRUCTURE INDUCED BY AN ACTION OF A LIE
GROUP - A GENERAL SCHEME

Supposewe are given an action of a Lie group G on a C*~algebraA. This
means,we haveahomomorphism

G~gH~~+UgEAUtA~

such that for everya EA, the mappingG 3g H—f aga EA is norm-continuous.

In this casewe call (A, G, a) aC*~dynamicalsystem.
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If A = C,~(A)then such an action is equivalent to the action of G on A. If
the latter action is transitive, it naturally inducesa differential structureon A.

If the action is not transitive, it still enablesus to distinguishfunctions<<differen-

tiable in directions tangentto orbits>>.This correspondsto a more generalnotion

of a differential structurethan themanifoldstructure.In thesequelwe adoptthis
more generalpoint of view, sinceit is not quite clearwhat is thenon-commutati-

ve analogueof transitivity (the transitivity is related to thenuclearity of algebras

of smoothfunctions — this waspointed to me by the Author of [1]). This point

is not essentialfor the generalschemewe want to formulatein this section.The

nest section is devotedto an exampleof (A, G, a) where theaction a is ergodic.

Ergodicity can be consideredas a first stepto transitivity (apparently,the latter

property is strongerthan the former). An action a of G on A is ergodic,if the

condition

aga=a foreach gEG

holds only for the multiplesof unit (for a = 0 if A hasnot a unit element).

For any C*~dynamicalsystem (A, G, a) we can introduce the following *-

-algebras:

A~’={a EA
0 : themappingG ~ g ~—÷ aga E A is of theclassC~}

(2) ~

(3) M(A)~={aEM(A) :aA~CA~,A~aCA~}.

If A = C(A) and a is transitive, then As’. A~and M(A)~are composedof

smooth (with respect to the induced differential structure) elementsof A0. A

and M(A), respectively. In a generalcase we considerA (the setof <<smooth

elements>>of A) as the analogueof a differentialstructure(induced by theaction

of G on the pseudospaceA). We call the pair (A, A ~) shortly a pseudornanifold.
Pseudomanifoldswith morphismsdefinedby

Mor((A, A~),(B,B~))={~ E Mor (A, B): ~(M(A)) CM(BY}

form a category.

We want to emphasizethe role of A0 in this construction.In [2] one defines

<<smoothelementsof A>> without using A0, but this leadsto the structurewhich

is not equivalent to the original differential structure in the commutativecase.

i.e. whenA = C,,,(A) andA is adifferential manifold.

Several statementswhich are true in the commutativecaseare expectedto

remain valid in a general case.The validity of someof thosestatementswould

be muchdesired,since it would simplify the whole structure.In the sequelsuch
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statementswill be calledconditionsof consistency.At present,we do not know

what should be assumedabout (A, G, a) in order to satisfy those conditions.

For instance,as a simple consequenceof definitions, we havefor any(A, G, a)

the following inclusions

A~CA
0flA~

(4) {aEM(A):aA~CA~,A~aCA~}CM(AY

(4’) M(AY C{a EM(A) :a(A0 fl A~)C A0flA~,(A0flA~)aCA0nA~}

(in order to prove the last inclusion we notice that A0is an idealofM(A), because

A0is an algebraicideal ofA [6]). Now we considertheequality

(5) A~=A0flA~

as a condition of consistency.If it is satisfied, we can saythat A~’ is composed
of <<smooth elementsof A with compactsupports>>.This condition also implies

the equalitiesin (4) and (4’), so thatM(A)~canbeequivalentlydefinedby repla-

cing A~ in (3) by As’. In a similar mannerwe treat the following condition:

(6) A~=AnM(AY

(trivially A~C A fl M(Ay). Next example of a consistencycondition is the

density of A~in A:

(7) A~=A.

Another consistencyproblem arises when we ask what is the analogueof a

bounded real smooth function. First of all we accept the following analogy

~(A, A~)= Mor ((C,,,(IR),C(IR)), (A,A~))— <<real smooth

functions>>,

where C~(IR)= C(IR) fl C~(lR)is the set of complex smooth functions on IR,

vanishing at infinity. Since for any a = a* EM(A) there existsa smoothfunction

fE C~’(IR)suchthat f(a) = a, we havethe following inclusions

~‘(A,A~) fl ReM(A)C ReM(AY

(8) ~(A,A~)flReACReA~

(9) ~ (A, A~)fl ReA0C Re

(to prove (8) and (9) we use (6) and (5), respectively).Now we considerthe

equality

(10) A,A~’)flReM(A)=ReM(A)’~
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as a condition of consistency.If it is satisfied,the three aboveinclusionsbecome
equalities,and we can establish the analogy betweenReM(A)~,ReA~,ReA~

and <<smoothreal functions>> which are <<bounded>’, <<vanishingat infinity>> and

<<with compact supports>>,resp. Let us notice that (10) is equivalent to the

following condition:

(11) ifa=a*EM(A)’~andfEC~(lR)thenf(a)EM(A)~.

Consistencyconditions (7), (5) togetherwith (2), (6) and (11) can be taken

as a starting point in an axiomaticapproachto pseudomanifolds.

3. QUANTUM MECHANICS

In this section we showhow a C*~dynamicalsystem arisesnaturally in quan-

tum mechanicsandwe study the induceddifferentialstructure.
We conslcler a physical systemwhose classicalconfiguration space is a finite-

-dimensionalaffine spaceQ. Then the correspondingclassicalphasespaceis the

symplecticmanifold f?~= T*Q = Q x V* (with the canonicalsymplectic2-form

w), where V is the tangent vector spaceof Q and V’~is the dual spaceof V.

The quantum descriptionof our system is provided by an irreducible repre-

sentationof the canonicalcommutation relations(CCR). We remind below the

adequatedefinition of a representationof the CCR. To this end let us denote

by ~ the spaceof affine functions on ~ (<<affine>> means<<linear plus cons-

tant>>). This spacehas a natural decomposition (~)=~~(Q) 0 V, defined as

follows:

F=feviffF(q,p)=f(q)+(p,v)foreach(q,p)EQxV*.

where (~,‘) denotesthe dualit”y betweenV” and V. The Poissonbracket of two

affine functions = f1 0 and = f2~ is equal to the following constant:

{fj, F~}=(df1, ~ —(df2, ~

A pair (W,H) is called a representationof the CCRfor ~ if H is a separable

Hilbert space and W is a strongly continuous mapping~ ~ F ~—+ W(F) E

E Aut H, suchthat

~

and

W(X ‘ 1) = e’>I for real X,

whereI is the identity of H.
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It is well known that there existsessentiallyonly oneirreducible representa-

tion of the CCR for ~. More precisely,if (W
1,H1) and (W2,H2) aretwo irreduci-

ble representationsof the CCR for ~, then thereexists aunitary operatorU

H1 -* H2, uniqueup to a <<phasefactor>> (complexnumberof modulus 1), such

that W2(F) = U W1(F)U* for FE3~(~).

One can use for instancethe SchrOdinger’s<<position representation>>.In this

caseH is the spaceof square-integrablehalf-densitieson Q and W(F) for F =

= f 0 v is given by the following formula:

L (df ~~>_ if(q)
(W(F),li)(q) = e~ Ii(q —v) for 1i EH.

Now we passto the descriptionof the <<non-commutativegeometry>>associat-

ed with this quantum-mechanicalframework. First of all, the classical locally

compact space~ must be replacedby a pseudospace.The adequatechoice is

the C*~algebraA composed of all compact operators on H (operators that
<<vanishat infinity>>). By the equivalencetheorem,A doesnot dependon particu-

lar irreduciblerepresentation(W, II) of the CCR for ~ Onecanshow that

M(A) is composedof all boundedoperatorson H,

Mor (C(IR), A) can be identified with the set of all (not necessarilybounded)

self-adjointoperatorson H,

A0 is composedofall operatorsof finite rankin H(see[51).

We describenow a naturalaction of the additive Lie groupG = V 0 V* on A.

Let us notefirst that G actstransitively on ~by translations.For eachXE G and

any function h on we denote by r,7,~.hthe translationof h by X. Then for a

fixed XE G, the pair (W o Tx, II) is again an irreducible representationof the

CCR for 1~.Hencethere exists U E Aut H, unique up to a phase factor, such

that W0TX= UW(.)U*.The formula

(12) axa=UaU*

definesnow the translation of an operator a E A by X. Using the commutation

relationsit is easyto checkthat U = W(F), whereFE ~ is suchthat

(13) XJw=—dF.

Formula(12) can be thenwritten as follows:

a~a= W(F)a W(F)*,

with F as in (13). From the strong continuity of Wcan be deducedthe norm-
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-continuity of X i—+ a
1a for eacha EA, so that (A, G, a) is a C*.dynamical

system.By the irreducibility of W, theactionof G on A is ergodic.

PROPOSITION1. For (A, G, a) describedabove

A~’={a�A0 :aH~CH~,a*H~CH~°}

where H~= {~i~iE H : the mapping,~(dA)3 F~-s~W(F) i~,EH is of the class

Cl. •

Proof (i) If a EA1~and ~i E H~then the mapping~I~1) ~ F ~—* W(F)(a i,Li) =

= W(F)aW(F)* . W(F)~)iEHis of the classC~.

(ii) If aEA0, aH°°CH°°and a*H~CH then a is a finite sum of operators

of the form ~~1><~’2I(Dirac’s notation), where i~1, I,1i2EH~.Such operators

belongto A4~.

PROPOSITION2.

= {a E A,: a H~C H~,a* H~C H’~’}

and

M(A~={aEM(A) :aH~CH°~,a*H~CH~}. •

Proof. IfaEA~and ~~‘EH~ thenal~JX%J1IEA~,so

aI~J)(I,11~=II~1I~
2a111EH”.

If a EA, a H~CH~anda*IJ~CH”~,thenfor eachb EA~’

(ab)H~C aH~C H~, (ab)*H~C b”’H~C H’~,

(ba)H’~C H~ and (ba)*H~’C a*H~C H’~.

The caseofM(A)~can be treatedidentically.

These resultsshow that the whole information about(A, A~) is containedin

thepair (H,H~)andvice versa.Let us study this connectionin more detail.

Let and betwo configurationspaces,as Q wasabove.All derivedobjects

like A, A etc. will be also labelled by the correspondingnumber(1 or 2). We

introducethe following notation:
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Iso (H1, H2) — theset of unitaryoperatorsfrom H1 to H2

Iso((111,Hr),(H2,Hr))={UEIso(H1,H2) : UHr =H~

Iso (As,A2) — isomorphismsin the categoryof pseudospaces.

PROPOSITION3. There is a bijective (modulo phase factor) correspondence

betweenpE Iso (A1, A2) and UE Iso (H1, H2) givenby <,c(a) = Ua U*fora EA1.

If<pand Uare related in this way, then

pEIso((A1,A~),(A2,A~))iffUEISo((H1,H1~’),(H2,H~)). •

Pro of. All irreduciblerepresentationsof A1 (the C*~algebraof compactoperators

in H~)are unitarily equivalent to the identical representation(c.f. [7]). This is
also the case for the representationof A1 in 112 given by <p E Iso (A1,A2). This

provestheexistenceof U. If UHr = H~then

~(M(A1Y) =M(A2)~

by Proposition2. Conversely,if the abovecondition is satisfied,thenfor i,li E

U~XU~=U(l~)(~l)U* =<p~(~)EM(A2Y,

henceUs~iE I-1’, by Proposition2.

It is interestingto considerH~as a topological vector space.The natural

locally convex topology on H is induced by the family of seminormsgiven by

the norms of partial derivativesof F F—~W(F) ~‘ at F = 0. It is easyto see, that

in the SchrodingerrepresentationH~coincideswith the Schwartzspace~9”(Q)
of functions on Q (multiplied by a constanthalf-density on Q). Also the above

describedtopology on H~coincideswith the standardtopologyof Y’(Q). The
questionnow arises whether this topology is preservedby an isomorphismor

not. The following proposition showsthat theansweris affirmative.

PROPOSITION4. If UE Iso (H1, H2) and UHr = H~then UjH~is a hoineornor-

phismof H1~andH~.

Proof Since H~and H7 are Fréchet spaces,one can use The Closed Graph

Theorem. It suffices to show that the graph of ~ is closedin H~nH~.

Let —÷ 0 in H~and U’.,li~-~ x in H~,then for any h E H2 the scalar product

~

hencex=0.
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This result shows that the topology of H~= Sf(Q) is already incorporated

in the structureof the pseudomanifold(A,A ~). We concludethat the equivalent
descriptionof (A,A °~)is providedby the following <<Gelfand triple>> (or <<rigged

Hilbert space>>):

H~C H C (H~

(here(H~)Xdenotesthe spaceof continuousantilinearfunctionalson H~).

PROPOSITIONS.M(A)~’ is composedof such boundedoperators a in H that
a anda* ~.. mapcontinuouslyH~into H~.

Proof The argumentis thesameasin the proofof Proposition4.

Let us now considerthe consistencyconditionsof the precedingsection. It

is easy to prove that our pseudomanifold(A,A ~) satisfies conditions(5), (6)
and (7). To this end we use Prop. 1, Prop. 2 and the density of H~in H. At
present,the authoris not able to prove condition (11). It is clear that this would

be a quite interestingtheorem.Forexample,it would imply that a one-parameter
group 01 unitary transformationspreservesJ if its generatordoes. Let us note
here some partial results concerning this problem. The first one is the trivial
observationthat for our (A,A~)we have the equality in (9). The secondone

is the following

PROPOSITION6. Ifa = a* EM(A)~is diagonal

(i) in the <position representation~
or

(ii) in the basiscomposedofthe gHermitefunctions)),
thenfor anyfE C~(lR)wehavef(a) EM(AY. •

Proof (i) If a is an operatorof multiplication by a function a(q), then onecan

show that this function and all its derivatives(a must be smooth)are polynomial-
ly bounded.Thenfo a hassimilarproperties.

(ii) Wehave

a= ~

where A,1 is a boundedsequenceand h~are the normalizedHermite functions.

Then
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f(a) =

and f(X~)is a boundedsequence.For any 1i EH, ~iibelongsto H~if and only

if (h~j ~1i)is a rapidly decreasingsequence([8]). It follows that for ~DE H~,
f(a)I,(I = Ef(X~)(h~I IJ.I)h~belongsto H~. •

Finally, let us remark that all pseudomanifolds(A, A ~) consideredin this

sectionare mutually isomorphic.This is so becausethereexistunitary operators

belonging to Iso ((H1,Hr), (H2,Hp) for all and Q2 (see [8]). In particular,

the pair (A,A ~) doesnot <<remember>>the dimensionof Q.
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