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Abstract. A method of obtaining a non-commutative analogue of a differential
structure from the action of a Lie group on a C*-algebra is proposed. The addition
of this structure to the usual structure of quantum mechanics turns out to be
equivalent to the replacement of the Hilbert space by a Gelfand triple (rigged
Hilbert space).

INTRODUCTION

It is striking that the notion of a «smooth classical observable» (smooth func-
tion on the phase space) has no quantum analogue up to now. This paper attempts
to fill this gap. The idea is simple: smooth functions can be characterized as
those functions which depend smoothly on translations of the underlying space.
We can apply this characterization to the case of quantum-mechanical observa-
bles, since there is a natural group of translations in quantum mechanics (Sec. 3).
In this paper we consider quantum-mechanical systems corresponding to flat
configuration spaces.

From the mathematical point of view, we try to extend the category of diffe-
rential manifolds to include non-commutative objects. It is known that the
category of locally compact spaces has a natural extension given by the theory of
C*-algebras («pseudospaces» of [1], see also [2]). One expects that the analogue
of a differential structure on a locally compact space is a particular dense *-sub-
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algebra A~ of a C*-algebra A4 (in the case of a differential manifold M, A4 is
composed of continuous functions on M, vanishing at infinity, and A™ is compos-
ed of smooth functions belonging to A). In the present paper we propose a
method of obtaining 4™ from an action of a Lie group on 4. Our method is
different from that of [2] and leads to the original differential structure in the
commutative case (whereas the method of [2] does not).

The case of quantum mechanics is studied in Sec. 3. We show that the resulting
differential structure can be equivalently described by a particular dense subspace
in the Hilbert space of quantum theory (this subspace tums out to be the Schwar-
tz space % in the Schrédinger representation). This gives a connection between
the differential structure and the «Gelfand triple» structure. We hope this fact
will help us to answer the question how some important symplectic-geometrical
constructions can be performed in the case of quantum mechanics. Some results
concerning this problem can be found in [3] and [4]. In those papers we faced
the problem of «choosing the correct Gelfand triple» and we have chosen the
one associated with the space % just for convenience. The present paper justifies
this choice to some extent.

Our analysis of noncommutative differential structures is not complete and
some questions remain unanswered. The commutative case suggests answers to
these questions. We consider these answers as desirable «consistency conditions»
in the non-commutative case. In the case of quantum mechanics we are able to
prove all these conditions except one. Whether it is satisfied or not seems to be
an interesting mathematical problem.

1. PSEUDOSPACES

In this section we recall the sense in which the theory of C*-algebras is a
generalization of the theory of locally compact spaces (see [1] for details).

There is a bijective correspondence between locally compact spaces A and
commutative C*-algebras A4, given by the relation 4 = C_(A) (complex conti-
nuous functions on A, vanishing at infinity). If Al and A2 are two locally compact
spaces, then the continuous mappings f : A, > A, are in bijective correspondence
with the elements of

(1) Mor (AZ’Al) ={p ¢ is a *-homomorphism of A2 into M(A 1), such that
the set 4, ¢(A4,) is total in A s

where 4, = C_(A}). the correspondence between f and y being given by sp(az) =
=a,o° f fora, & A,. Here for any C*-algebra A we denote by M(A4) the multiplier
algebra of A ({91, [1]). The algebra M(A4) can be defined as follows. One can
always embed A into the algebra B(H) of all bounded operators in a Hilbert
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space H. Let us fix one such embedding A C B(H) and put
M(A)={bEB(H) :bA CA,Ab C A4}

M(A) is a C*-algebra and contains A as an ideal. The C*-algebra M(A) is deter-
mined only by A4 and does not depend on the way we embed A into B(H), i.e.
different embeddings lead to isomorphic C*-algebras (see [1]). For 4 = C_(A),
M(A) is the algebra of bounded continuous functions on A.

We conclude that the category of locally compact spaces is dual to the category
of commutative C*-algebras with morphisms defined in (1).

All (not necessarily commutative) C*-algebras with morphisms defined as in
(1) form a category. The possibility of composing morphisms is guaranteed by
the fact that any ¢ € Mor (4,, 4)) can be uniquely extended to a homomorphism
] :M(Az) —>M(Al). The objects of the (formally) dual category are called pseudo-
spaces. «Pseudospace» is (in general) only a suggestive name fora C*-algebra 4 if
one wants to think of A as an analogue of a locally compact space. We have the
following analogies:

Mor (C_(IR), A) — «real continuous functions»
Re M(A) — «bounded real continuous functions»
Re A — «real continuous functions, vanishing at infinity »,

where IR is the real line. Here for any *-algebra B we denote by Re B the set of
self-adjoint elements of B. The inclusion of Re M(A) into Mor (C_(IR), 4) is
given by assigning to each a =a* €M(4) the homomorphism C_(IR) > f+
> f(a) e M(A). Here f(a) is defined by the functional calculus of self-adjoint
elements in C*-algebras (see [7]). We shall use also the analogy

Re A, — «real continuous functions with compact supports»,

where 4, is the «minimal dense ideal» of Pedersen [5]in 4.

2. DIFFERENTIAL STRUCTURE INDUCED BY AN ACTION OF A LIE
GROUP - A GENERAL SCHEME

Suppose we are given an action of a Lie group G on a C*-algebra 4. This
means, we have a homomorphism

GagHogeAutA,

such that for every a € 4, the mapping G 2 g — 0,a € A is norm-continuous.
In this case we call (4, G, 0) a C*-dynamical system.
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If A =C_(A) then such an action is equivalent to the action of G on A.If
the latter action is transitive, it naturally induces a differential structure on A.
If the action is not transitive, it still enables us to distinguish functions «differen-
tiable in directions tangent to orbits». This corresponds to a more general notion
of a differential structure than the manifold structure. In the sequel we adopt this
more general point of view, since it is not quite clear what is the non-commutati-
ve analogue of transitivity (the transitivity is related to the nuclearity of algebras
of smooth functions — this was pointed to me by the Author of [1]). This point
is not essential for the general scheme we want to formulate in this section. The
nest section is devoted to an example of (4, G, o) where the action o is ergodic.
Ergodicity can be considered as a first step to transitivity (apparently, the latter
property is stronger than the former). An action o of G on A is ergodic, if the
condition

0, a=a for each geEC

holds only for the multiples of unit (for a = 0 if A has not a unit element).
For any C*-dynamical system (A, G, 0) we can introduce the following *-

-algebras:

Ay ={a€A0 :the mapping G 2 g 0,4 € A is of the class C™}
2 A“:{aeA:aA(‘;’CA;,A(‘;’aCAS"}
3) MAY” ={aeM(A) :aA” CA” , Aa CA™}.

If A=C_(A) and o is transitive, then Ag’, A~ and M(A)” are composed of
smooth (with respect to the induced differential structure) elements of AO. A
and M(A), respectively. In a general case we consider 4~ (the set of «smooth
elements» of A) as the analogue of a differential structure (induced by the action
of G on the pseudospace 4). We call the pair (4, A”) shortly a pseudomanifold.
Pseudomanifolds with morphisms defined by

Mor (4, A™), (B,B=Y) ={pEMor (4, B): g(M(A4)") C M(B)~}

form a category.

We want to emphasize the role of 4, in this construction. In [2] one defines
«smooth elements of A» without using AO’ but this leads to the structure which
is not equivalent to the original differential structure in the commutative case.
i.e. when 4 = C_(A) and A is a differential manifold.

Several statements which are true in the commutative case are expected to
remain valid in a general case. The validity of some of those statements would
be much desired, since it would simplify the whole structure. In the sequel such
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statements will be called conditions of consistency. At present, we do not know
what should be assumed about (4, G, 0) in order to satisfy those conditions.

For instance, as a simple consequence of definitions, we have for any (4, G, o)
the following inclusions

AT CANA”
(4) {aEM(A) 0 AT C AT, ATa C AT} C M(A)”
(4" M(A)™ C{a € M(A) :a(A;N A7) C AN A~ (AN A™)a CAZN A"}

(in order to prove the last inclusion we notice that A0 is an ideal of M(A4), because
A is an algebraic ideal of 4 [6]). Now we consider the equality

(5) AT =4, A%

as a condition of consistency. If it is satisfied, we can say that A is composed
of «smooth elements of A with compact supports». This condition also implies
the equalities in (4) and (4"), so that M(A)> can be equivalently defined by repla-
cing A” in (3) by A;. In a similar manner we treat the following condition:

(6) AT=ANMA~

(trivially A~ C A NM(A4)T). Next example of a consistency condition is the
density of A in 4:

@) A=A,

Another consistency problem arises when we ask what is the analogue of a
bounded real smooth function. First of all we accept the following analogy

2(A,A”) = Mor ((C_(R), C(IR)), (A, A™)) — «real smooth

functions»,

where CZ(IR) = C_(IR) N C™(IR) is the set of complex smooth functions on IR,
vanishing at infinity. Since for any a = a* € M(A4) there exists a smooth function
f € Cy(R) such that f(a) = a, we have the following inclusions

2 (A, A7) N Re M(4) C Re M(A)~
(8) D (A, A")NRe A CRe A~
(9 2 (4,4") N Re A C Re A7

(to prove (8) and (9) we use (6) and (5), respectively). Now we consider the
equality

(10 2(4,A") N Re M(A) = Re M(A)™
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as a condition of consistency. If it is satisfied, the three above inclusions become
equalities, and we can establish the analogy between Re M(A)~, Re A~, Re Ag
and «smooth real functions» which are «bounded», «vanishing at infinity» and
«with compact supports», resp. Let us notice that (10) is equivalent to the
following condition:

(1n ifa=a*€M(A)” and f € C”(IR) then f(a) e M(A)™.

Consistency conditions (7), (5) together with (2), (6) and (11) can be taken
as a starting point in an axiomatic approach to pseudomanifolds.

3. QUANTUM MECHANICS

In this section we show how a C*-dynamical system arises naturally in quan-
tum mechanics and we study the induced differential structure.

We consider a physical system whose classical configuration space is a finite-
-dimensional affine space Q. Then the corresponding classical phase space is the
symplectic manifold # = T*Q = Q x V* (with the canonical symplectic 2-form
w), where V is the tangent vector space of ¢ and V* is the dual space of V.

The quantum description of our system is provided by an irreducible repre-
sentation of the canonical commutation relations (CCR). We remind below the
adequate definition of a representation of the CCR. To this end let us denote
by # () the space of affine functions on & («affine» means «linear plus cons-
tant»). This space has a natural decomposition #(2) =% (Q) @ V, defined as
follows:

F=feov iff F(q,p)=/f(q)+ (p,v) foreach (¢,p)EQ x V*,

where (-, -) denotes the duality between V* and V. The Poisson bracket of two
affine functions F1 :fl ®v, and F2 =f269 v, is equal to the following constant:

{F, E}=(df}, vy —(df, v).

A pair (W, H) is called a representation of the CCR for P if H is a separable
Hilbert space and W is a strongly continuous mapping #(?) > F — W(F) €
€ Aut H, such that

i
W(E, + B) = WD W(E) exp (? 1B, Fz})

and
W\ - 1) = e *M for real A,

where [ is the identity of H.
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It is well known that there exists essentially only one irreducible representa-
tion of the CCR for 2. More precisely, if (WI,HI) and (W2,H2) are two irreduci-
ble representations of the CCR for 2, then there exists a unitary operator U :
:H,— H,, unique up to a «phase factor» (complex number of modulus 1), such
that W,(#) = U W, (F)U* for FF € #(P).

One can use for instance the Schrodinger’s «position representation». In this
case H is the space of square-integrable half-densities on Q and W(F) for F =
= f® v is given by the following formula:
WEYYg) = &2 S0

Now we pass to the description of the «non-commutative geometry» associat-
ed with this quantum-mechanical framework. First of all, the classical locally
compact space & must be replaced by a pseudospace. The adequate choice is
the C*-algebra A composed of all compact operators on H (operators that
«vanish at infinity»). By the equivalence theorem, A does not depend on particu-
lar irreducible representation (W, H) of the CCR for 2. One can show that

Yv(g—v) for YEH.

M(A) is composed of all bounded operators on H,

Mor (C_(IR), A) can be identified with the set of all (not necessarily bounded)
self-adjoint operators on H,

A, is composed of all operators of finite rank in H (see [5]).

We describe now a natural action of the additive Lie group G =V & V*on A.
Let us note first that G acts transitively on 2 by translations. For each X € G and
any function 4 on & we denote by TXh the translation of # by X. Then for a
fixed X € G, the pair (Wor,, H) is again an irreducible representation of the
CCR for ?. Hence there exists U € Aut H, unique up to a phase factor, such
that W o Ty = UW(-)U*. The formula

(12) oya=UalU’

defines now the transiation of an operator a € A by X. Using the commutation
relations it is easy to check that U = W(F), where ' € %(£) is such that

(13) X Jw=—dF.
Formula (12) can be then written as follows:
oya = W(F)a W(F)*,

with F" as in (13). From the strong continuity of W can be deduced the norm-
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-continuity of X +—— 0,a for each a € 4, so that (4, G, 0) is a C*-dynamical
system. By the irreducibility of W, the action of G on 4 is ergodic.

PROPOSITION 1. For (A, G, o) described above
Ag’:{aer caH"CH™, a*H"C H™}

where H” ={y € H :the mapping F(P)>D F~>WFYy €H is of the class
Cc~) =

Proof. (i) If a€ A7 and Y € H™ then the mapping F(#) D F r— W(F)(ay) =
= W(F)aW(F)* - W)y € H is of the class C™.

G) If a €Ay, aH” CH” and a*H™ C H then a is a finite sum of operators
of the form |y, Xy,| (Dirac’s notation), where ¥,. ¥, € H”. Such operators
belong to 4. u

PROPOSITION 2.
A" ={a€A,;aH"CH", a*H"CH"}
and

M) ={aeEM(A) :aH>CH”, a*H” C H™}. "

Proof. 1fa€ A and Yy € H™ thena |y XY |E A, s0
al Yy |y =|v|av e H".

fa€A,aH” CH” anda*H” CH", then foreachb € A
(ab)H> CaH”CH>”, (@aby*H”Cb*H”CH",
(ba)H”CH™ and (ba)*H” Ca*H” CH".

The case of M(A) ™ can be treated identically. |

These results show that the whole information about (4, A™) is contained in
the pair (H, H™) and vice versa. Let us study this connection in more detail.

Let Q| and Q2 be two configuration spaces, as Q was above. All derived objects
like 4, A~ etc. will be also labelled by the corresponding number (1 or 2). We
introduce the following notation:
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Iso (Hl, Hz) — the set of unitary operators from H1 to H2
Iso ((H,, HY), (H,, HY)) = {Uelso (H,H,)) : UH = H}
Iso (4,, 4,) — isomorphisms in the category of pseudospaces.

PROPOSITION 3. There is a bijective (modulo phase factor) correspondence
berween ¢ € Iso (Al, A2) and U € Iso (Hl’ Hz) given by pla) = Ua U* fora €A,
If v and U are related in this way, then

PE€Is0 (A, AT), (A, A iff UElso (H,, H), (Hy, HS)). .

Proof. All irreducible representations of 4 1 (the C*-algebra of compact operators
in H,) are unitarily equivalent to the identical representation (cf. [7]). This is
also the case for the representation of 4, in H2 given by v € Iso (4, Az)- This
proves the existence of U. If UH” = HJ then

PM(AD™) = M(A)”

by Proposition 2. Conversely, if the above condition is satisfied, then for ¢ € H;"
| U U | = U DU* = o(| yXY]) € M(A,)7,

hence Uy € H, by Proposition 2. ]

It is interesting to consider H™ as a topological vector space. The natural
locally convex topology on H is induced by the family of seminorms given by
the norms of partial derivatives of F — W(F){ at F = 0. It is easy to see, that
in the Schrédinger representation H™ coincides with the Schwartz space & (Q)
of functions on @ (multiplied by a constant half-density on Q). Also the above
described topology on H™ coincides with the standard topology of ¥ (Q). The
question now arises whether this topology is preserved by an isomorphism or
not. The following proposition shows that the answer is affirmative.

PROPOSITION 4. If U€ Iso (H, H,) and UH = HJ then U'H{"’ is a homeomor-
phism of H; and H'. u

Proof. Since H[" and Hy are Fréchet spaces, one can use The Closed Graph
Theorem. It suffices to show that the graph of U!Hi"’ is closed in Hy GBH;’.
Let ¢, —> 0 in H1°° and Uy, - X in H;, then for any & € H, the scalar product

(x|h)= lim Uy, |h) = lim (Y, | U*h) =0,
n-> oo n—eo

hence x = 0. .
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This result shows that the topology of H™ = % (Q) is already incorporated
in the structure of the pseudomanifold (A, A™). We conclude that the equivalent
description of (A, A ) is provided by the following «Gelfand triple» (or «rigged
Hilbert space»):

H>CHC(H™)*

(here (H™)* denotes the space of continuous antilinear functionals on H ™).

PROPOSITION 5. M(A)~ is composed of such bounded operators a in H that
a|y- and a*|,. map continuously H™ into H™.

Proof. The argument is the same as in the proof of Proposition 4. ]

Let us now consider the consistency conditions of the preceding section. It
is easy to prove that our pseudomanifold (A, A~) satisfies conditions (5), (6)
and (7). To this end we use Prop. 1, Prop. 2 and the density of H” in H. At
present, the author is not able to prove condition (11). It is clear that this would
be a quite interesting theorem. For example, it would imply that a one-parameter
group ol unitary transformations preserves % if its generator does. Let us note
here some partial results concerning this problem. The first one is the trivial
observation that for our (4, A™) we have the equality in (9). The second one
is the following

PROPOSITION 6. Ifa =a* e M(A)* is diagonal
(i) in the «position representation »
or
(ii) in the basis composed of the «Hermite functionsy,
then for any f€ C~(IR) we have f(a) E M(A)™. [ ]

Proof. (i) If a is an operator of multiplication by a function a(g), then one can
show that this function and all its derivatives (¢ must be smooth) are polynomial-
ly bounded. Then f o g has similar properties.

(ii) We have

a=Y N, |h)h,],
n

where A, is a bounded sequence and A, are the normalized Hermite functions.
Then
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fa) = Z FON) | Ak, |
n

and f(A,) is a bounded sequence. For any y € H, ¥ belongs to H™ if and only

if <h,|y) is a rapidly decreasing sequence ([8]). It follows that for ¢ € H™,

f@y =2 f(\)<h,| ) h, belongs to H*. n
n

Finally, let us remark that all pseudomanifolds (4, A~) considered in this
section are mutually isomorphic. This is so because there exist unitary operators
belonging to Iso (4, H)"), (H,, HY)) for all @, and @, (see [8]). In particular,
the pair (4, A ~) does not «remember» the dimension of Q.
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